Step 2 Relate ¥(x) to ¢'(s) /¢(s).

For x > 0 define
1 ifz>1,
E(z) =

0 ifx<l.
Then

V(@)=Y An) = iA(n)E (%) (16)

n<x

Theorem 6.17 Ifz > 0 and ¢ > 0 then

1 et g 1
. T gs=(1-2)E@). 17
omi Jo s s(s41) < x> (z) (17)

Proof Let C = C (0, R) be the circle centre the origin, radius R > max (1, ¢).

Let the vertical line Re s = ¢ meet the circle at points ¢ + itg.

Let Lr be the vertical line segment from ¢ — ity to ¢ + ity and let Cy, Cy be
the sections of the circle C lying to the left and right of this line, respectively.
SO

Ci={se€C:Res<c¢} and Cy={se€C:Res>c}.

For any regular path I' C C write

1 x®
IM=—[—"—d
() 2m’/rs(s+1) *

so, in particular, the left hand side of (17) is limg o [(LRg).
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Assume x > 1 and consider [(Lr U Cy).

Res=c

Partial fractions show that

1 1 1
- 18
s(s+1) s s+1 (18)

so the integrand of I(Lz U Cy) has two simple poles, at s = 0 and —1 which
lie inside Lr U Cy since R > 1. The residues at the poles are

i i
= 1. —_ =
1;{:eoss(s—i—l) P (s—-0) s(s+1) ’
Res — lim (s41) — !
es = lim (s =——.
s=—15(s+1) s=—1 s (s+1) T

So, by Cauchy’s Theorem, (stated as the integral around the boundary of a
finite region equals the sum of the residues of poles within the region )

1— 1= I(£RUC) = I(La) + 1(C) (19)

for all R > 1. We will be letting R — oc.

On the circle C; we have |s| = R and

s+ 1] >|s| —1=R-1,
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having used the triangle inequality. Also, on C; we have Res < ¢ and thus,
since we are assuming = > 1 we have |2°| = 7 < z¢. Hence

C

1 x® 1 T
I(C = |— | ——ds|<— | ———|d
()l omi /C s(s+1) 5‘ =21 Je, RR=1) %!
1 x¢
< —— IR
= 9rR(R-1)
 R-1
which tends to zero as R — oo. Hence letting R — oo gives
1 c+1i00 s

— ds = lim I
omi Jo s s(sED) T T RSs (Lr)
= lim I(/SRUCl)
R—o00

by (19) and lim I(C;) =0
R—o0

_ 1—;:(1—i>E(a:)

Assume next that 0 < z < 1 and consider (L U Cy).

since x > 1.

Res=c

33

—tr |

The integrand (18) has no poles inside this contour and so, by Cauchy’s
Theorem, I(Lr UCs) = 0 for all R.
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On Cy we have Res > ¢ but now = < 1 so |z*| = 27 < z¢ again. Thus we
recover the same bound |I(Cs)| < ¢/ (R—1) which tends to 0 as R — oc.

Hence, if x < 1, then
1 c+io00 s

x
— _ = lim [
270 Jolino s(s+1)d$ R (£r)
= lim I(ER U CQ)
R—o00
by (19) and lim [(Cs) =0
R—o0
1
= 0=(1—-—-)F
since 0 <z < 1. [ |

Question about the proof. Why do we choose the contour Lz U C; when
x>1and LrUCy when x < 17

Answer In the proof we made use of x7 < z¢.

If z > 1 then, to get an upper bound on 27, we need an upper bound o, thus
we keep s to the left of the line Res = ¢, i.e. s € (5.

If z < 1 then to get an upper bound on z% we need a lower bound on o, and
so we keep s to the right of the line Res = ¢, i.e. s € Cs.

Theorem 6.18 Suppose thaty_ " | a,n"* is absolutely convergent for Re s >
1 with sum D(s). Let A(x) =5 . an. Then for ¢ >1 and x > 1,

n<x
1 c+100 T

9 D(s) 5(3+1)d8 = /1 A(t) dt.

c—100

(Hand waving For All) If we could justify the interchanges of infinite integrals
with infinite sums then we could say
1 ctioco X s+1

a, = L[t (z/n)°
5 — ——ds = ne— d
271 nz_:lnss(s+1) ° x;a 2772/c o S(s+1) °

c—100 —

a2
- Zan(x—n):/le(t)dt.

n<x
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Proof Full details in the appendix. |

A naive application of Theorem 6.18 would be with D(s) = '(s) /¢(s), but,
as we will see below, this has a pole at s = 1 which we would rather was not
there.

Recall that if a function F'is holomorphic in a region except for either a pole
or zero at « then it can be written as

F(s)=g(s) (s —a)",

with g (s) holomorphic in a region containing «, and g («) # 0. Here m € Z
is the order of the singularity and is > 0 if « is a zero, and < 0 if « is a pole.

For s # «, the derivative of F'is, by the Product Rule,
F'(s) = mg(s) (s — )™+ ¢g/(s) (s — )™

Then

The term ¢'(s) /g(s) is well-defined close to s = « since g(a) # 0. The other
term m/ (s — «) has a simple pole (i.e. of order 1) at s = a, with residue m.

We apply this with F'(s) = ((s). From Theorem 6.12 we have

C(s) = 1+%—s loo L} (21)

where

18



In the notation above, m = —1 and thus (20) gives

If this added to (21) we find that

C) 4 ooy <_1 . 9’(8>> i (1 i h(s)> UAC YRS

¢(s) s=1 " g(s) s—1 9(s)
i.e., the poles cancel!
Write .
F(s) = CC/((;) +((s) = 21 (_A(Zz - 1),

for Res > 1. It is to F'(s) that we apply Theorem 6.18, and in the notation

of that result
Ar) = (=An)+1) = —(z) + [a].

n<x
Hence, for ¢ > 1, Theorem 6.18 gives the fundamental
1 ctioo x*tds

/1 Cwity - di=—-1 [ Fs)

270 J o ino s(s+1)

From a problem sheet you were asked to show that

/lm[t}dt:;xQ—l—O(x).

Combine to get the important

1 etico x*tds

/1m¢(t) it — %J;Q—— F(s)

2700 J o ioo s(s+1)
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Appendix for Step 2

We here replace a handwaving justification of Theorem 6.18 given in the
lectures by its proof.

Theorem 6.18 Suppose that Y>> | a,n™° is absolutely convergent for Res >
1 with sum D(s). Let A(z) =), _, an. Then for ¢ >1 and x> 1,

1 c+i00 s+1

D(s)

c—100 (S+1)

———ds = /lT A(t)dt. (22)

2mi

Proof Write
z°D(s) = G(s)+ H(s),

G(s) = Zan (%)s and H(s) = Zan (%)s

n<x n>w

where

Since G (s) is only a finite sum we are justified in interchanging the summa-
tion and integration in

1 c+ioco

T c+ioo x/n
omi J. G(S)s(s+1)ds B :L’Z 2772/ s—|—1

C—100

n
- . 1_7) by Th 17,
mZa ( . N eorem 6.17

n<z

= Zan(x—n):/j/l(t)dt.

n<x

Thus G (s) has given the right hand side of (22), so the remaining H(s) =
x*D(s) — G(s) will have to contribute nothing!

Consider now
1 T

— H(s) ——ds, 23
271 LrUCs ( ) S ($+1) ( )
with notation from the proof of Theorem 6.17. Inside the contour L U Cs,
the series H(s) differs from D(s) by only a finite number of terms and is thus
absolutely convergent and has no poles. Therefore, by Cauchy’s Theorem,
the integral (23) is zero, i.e.

1 x 1 x

-— | H ds+— | H
0 271 Je, (S)s(s—i-l) +2m Ch (S)s(5+1)

ds. (24)
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We have chosen C, instead of C; because for the terms (z/n)’ seen in H(s),
we have n > x, i.e. z/n < 1 and so to get an upper bound on (z/n)’ we
need a lower bound on o. Thus we keep s to the right of the line Res = ¢,
in other words, s € Cy. For such s we get

AN T\° T\¢
G=G) =)
n n n
Justify the following use of the triangle inequality on an infinite sum by the
fact that ) a,n~° converges absolutely. So

S (5|2 Sl (8) < Sl (2

n>x n>x n>x

|H(s)| =

For H (s) we have, by assumption, that >~ _ |a,|/n® < 3707 | |a,| /n®, which

converges, to M say. Hence

|H(s)] < xCZM < Ma“.
nC

n>x

Using the arguments seen in the proof of Theorem 6.17,

1 x Mzt
— [ H ds| <
27ri/02 Sy s
which tends to 0 as R — co. Thus, from (24),
T 1 c+i00 T
0= lim — H(s) ———ds = — H(s) ———d
Rooo 270 /ER (s) s(s+1) * = omi oo () s(s+1) °
as required. [ ]
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