
Step 2 Relate ψ(x) to ζ ′(s) /ζ(s) .

For x > 0 define

E (x) =

{

1 if x ≥ 1,

0 if x < 1.

Then

ψ (x) =
∑

n≤x

Λ(n) =
∞
∑

n=1

Λ(n)E
(x

n

)

. (16)

Theorem 6.17 If x > 0 and c > 0 then

1

2πi

∫

c+i∞

c−i∞

xs

s (s+1)
ds =

(

1−
1

x

)

E (x) . (17)

Proof Let C = C (0, R) be the circle centre the origin, radius R > max (1, c) .

Let the vertical line Re s = c meet the circle at points c± itR.

Let LR be the vertical line segment from c− itR to c+ itR and let C1, C2 be
the sections of the circle C lying to the left and right of this line, respectively.
so

C1 = {s ∈ C : Re s ≤ c} and C2 = {s ∈ C : Re s ≥ c} .

For any regular path Γ ⊆ C write

I(Γ) =
1

2πi

∫

Γ

xs

s (s+1)
ds,

so, in particular, the left hand side of (17) is limR→∞ I(LR).
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Assume x ≥ 1 and consider I(LR ∪ C1).

tR

−tR

Res=c

 !

 !

1 0

R

  

1

Partial fractions show that

1

s (s+1)
=
1

s
−

1

s+1
(18)

so the integrand of I(LR ∪ C1) has two simple poles, at s = 0 and −1 which
lie inside LR ∪ C1 since R > 1. The residues at the poles are

Res
s=0

xs

s (s+1)
= lim

s→0
(s− 0)

xs

s (s+1)
= 1,

Res
s=−1

xs

s (s+1)
= lim

s→−1
(s+1)

xs

s (s+1)
= −

1

x
.

So, by Cauchy’s Theorem, (stated as the integral around the boundary of a
finite region equals the sum of the residues of poles within the region )

1−
1

x
= I(LR ∪ C1) = I(LR) + I(C1) (19)

for all R > 1. We will be letting R→∞.

On the circle C1 we have |s| = R and

|s+ 1| ≥ |s| − 1 = R−1,

15



having used the triangle inequality. Also, on C1 we have Re s ≤ c and thus,
since we are assuming x ≥ 1 we have |xs| = xσ ≤ xc. Hence

|I(C1)| =

∣

∣

∣

∣

1

2πi

∫

C1

xs

s (s+1)
ds

∣

∣

∣

∣

≤
1

2π

∫

C1

xc

R (R−1)
|ds|

≤
1

2π

xc

R (R−1)
2πR

=
xc

R−1
,

which tends to zero as R→∞. Hence letting R→∞ gives

1

2πi

∫

c+i∞

c−i∞

xs

s (s+1)
ds = lim

R→∞
I(LR)

= lim
R→∞

I(LR ∪ C1)

by (19) and lim
R→∞

I(C1) = 0

= 1−
1

x
=

(

1−
1

x

)

E (x)

since x ≥ 1.

Assume next that 0 < x < 1 and consider I(LR ∪ C2).

tR

−tR

Res=c

 !

 !

R

The integrand (18) has no poles inside this contour and so, by Cauchy’s
Theorem, I(LR ∪ C2) = 0 for all R.
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On C2 we have Re s ≥ c but now x < 1 so |xs| = xσ ≤ xc again. Thus we
recover the same bound |I(C2)| ≤ xc/ (R−1) which tends to 0 as R→∞.

Hence, if x < 1, then

1

2πi

∫

c+i∞

c−i∞

xs

s (s+1)
ds = lim

R→∞
I(LR)

= lim
R→∞

I(LR ∪ C2)

by (19) and lim
R→∞

I(C2) = 0

= 0 =

(

1−
1

x

)

E (x)

since 0 < x < 1. �

Question about the proof. Why do we choose the contour LR ∪ C1 when
x ≥ 1 and LR ∪ C2 when x < 1?

Answer In the proof we made use of xσ ≤ xc.

If x ≥ 1 then, to get an upper bound on xσ, we need an upper bound σ, thus
we keep s to the left of the line Re s = c, i.e. s ∈ C1.

If x < 1 then to get an upper bound on xσ we need a lower bound on σ, and
so we keep s to the right of the line Re s = c, i.e. s ∈ C2.

Theorem 6.18 Suppose that
∑∞

n=1
ann

−s is absolutely convergent for Re s >

1 with sum D(s). Let A(x) =
∑

n≤x
an. Then for c > 1 and x > 1,

1

2πi

∫

c+i∞

c−i∞

D(s)
xs+1

s (s+1)
ds =

∫

x

1

A(t) dt.

(Hand waving For All) If we could justify the interchanges of infinite integrals
with infinite sums then we could say

1

2πi

∫

c+i∞

c−i∞

∞
∑

n=1

an
ns

xs+1

s (s+1)
ds = x

∞
∑

n=1

an
1

2πi

∫

c+i∞

c−i∞

(x/n)s

s (s+1)
ds

= x

∞
∑

n=1

an

(

1−
n

x

)

E
(x

n

)

=
∑

n≤x

an (x− n) =

∫

x

1

A(t) dt.
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Proof Full details in the appendix. �

A naive application of Theorem 6.18 would be with D(s) = ζ ′(s) /ζ(s) , but,
as we will see below, this has a pole at s = 1 which we would rather was not
there.

Recall that if a function F is holomorphic in a region except for either a pole
or zero at α then it can be written as

F (s) = g (s) (s− α)m ,

with g (s) holomorphic in a region containing α, and g (α) 6= 0. Here m ∈ Z

is the order of the singularity and is > 0 if α is a zero, and < 0 if α is a pole.

For s 6= α, the derivative of F is, by the Product Rule,

F ′(s) = mg(s) (s− α)m−1 + g′(s) (s− α)m .

Then

F ′(s)

F (s)
=
mg(s) (s− α)m−1 + g′(s) (s− α)m

g(s) (s− α)m
=

m

s− α
+
g′(s)

g(s)
. (20)

The term g′(s) /g(s) is well-defined close to s = α since g(α) 6= 0. The other
term m/ (s− α) has a simple pole (i.e. of order 1) at s = α, with residue m.

We apply this with F (s) = ζ(s). From Theorem 6.12 we have

ζ(s) = 1 +
1

s−1
− s

∫ ∞

1

{u}

u1+s
du (21)

=
1

s−1
+ h(s) =

g(s)

s−1
,

where

h(s) = 1− s

∫ ∞

1

{u}

u1+s
du and g(s) = 1 + (s−1)h(s) .
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In the notation above, m = −1 and thus (20) gives

ζ ′(s)

ζ(s)
= −

1

s−1
+
g′(s)

g(s)
.

If this added to (21) we find that

ζ ′(s)

ζ(s)
+ ζ(s) =

(

−
1

s−1
+
g′(s)

g(s)

)

+

(

1

s−1
+ h(s)

)

=
g′(s)

g(s)
+ h(s) ,

i.e., the poles cancel!

Write

F (s) =
ζ ′(s)

ζ(s)
+ ζ(s) =

∞
∑

n=1

(−Λ(n) + 1)

ns
,

for Re s > 1. It is to F (s) that we apply Theorem 6.18, and in the notation
of that result

A (x) =
∑

n≤x

(−Λ(n) + 1) = −ψ(x) + [x] .

Hence, for c > 1, Theorem 6.18 gives the fundamental

∫

x

1

(ψ(t)− [t]) dt = −
1

2πi

∫

c+i∞

c−i∞

F (s)
xs+1ds

s (s+1)
.

From a problem sheet you were asked to show that

∫

x

1

[t] dt =
1

2
x2 +O (x) .

Combine to get the important

∫

x

1

ψ (t) dt =
1

2
x2 −

1

2πi

∫

c+i∞

c−i∞

F (s)
xs+1ds

s (s+1)
+O (x) .
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Appendix for Step 2

We here replace a handwaving justification of Theorem 6.18 given in the
lectures by its proof.

Theorem 6.18 Suppose that
∑∞

n=1
ann

−s is absolutely convergent for Re s >

1 with sum D(s). Let A(x) =
∑

n≤x
an. Then for c > 1 and x > 1,

1

2πi

∫

c+i∞

c−i∞

D(s)
xs+1

s (s+1)
ds =

∫

x

1

A(t) dt. (22)

Proof Write
xsD(s) = G(s) +H(s) ,

where
G(s) =

∑

n≤x

an

(x

n

)s

and H(s) =
∑

n>x

an

(x

n

)s

.

Since G (s) is only a finite sum we are justified in interchanging the summa-
tion and integration in

1

2πi

∫

c+i∞

c−i∞

G(s)
x

s (s+1)
ds = x

∑

n≤x

an
1

2πi

∫

c+i∞

c−i∞

(x/n)s

s (s+1)
ds

= x
∑

n≤x

an

(

1−
n

x

)

by Theorem 6.17,

=
∑

n≤x

an (x− n) =

∫

x

1

A (t) dt.

Thus G (s) has given the right hand side of (22), so the remaining H(s) =
xsD(s)−G(s) will have to contribute nothing!

Consider now
1

2πi

∫

LR∪C2

H(s)
x

s (s+1)
ds, (23)

with notation from the proof of Theorem 6.17. Inside the contour LR ∪ C2,
the series H(s) differs from D(s) by only a finite number of terms and is thus
absolutely convergent and has no poles. Therefore, by Cauchy’s Theorem,
the integral (23) is zero, i.e.

0 =
1

2πi

∫

C2

H(s)
x

s (s+1)
ds+

1

2πi

∫

LR

H(s)
x

s (s+1)
ds. (24)
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We have chosen C2 instead of C1 because for the terms (x/n)
s seen in H(s),

we have n > x, i.e. x/n < 1 and so to get an upper bound on (x/n)σ we
need a lower bound on σ. Thus we keep s to the right of the line Re s = c,
in other words, s ∈ C2. For such s we get

∣

∣

∣

(x

n

)s
∣

∣

∣
=

(x

n

)σ

≤
(x

n

)c

.

Justify the following use of the triangle inequality on an infinite sum by the
fact that

∑∞

n=1
ann

−s converges absolutely. So

|H(s)| =

∣

∣

∣

∣

∣

∑

n>x

an

(x

n

)s

∣

∣

∣

∣

∣

≤
∑

n>x

|an|
(x

n

)σ

≤
∑

n>x

|an|
(x

n

)c

ForH (s) we have, by assumption, that
∑

n>x
|an| /n

c ≤
∑∞

n=1
|an| /n

c, which

converges, to M say. Hence

|H(s)| ≤ xc
∑

n>x

|an|

nc
≤Mxc.

Using the arguments seen in the proof of Theorem 6.17,

∣

∣

∣

∣

1

2πi

∫

C2

H(s)
x

s (s+1)
ds

∣

∣

∣

∣

≤
Mxc+1

R− 1
,

which tends to 0 as R→∞. Thus, from (24) ,

0 = lim
R→∞

1

2πi

∫

LR

H(s)
x

s (s+1)
ds =

1

2πi

∫

c+i∞

c−i∞

H(s)
x

s (s+1)
ds

as required. �
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